

Email: editor@ijarets.org

Volume-9, Issue-6 June – 2022

www.ijarets.org

An Examination on Sets of preopen topology

Manish Kumar Gupta

M.Phil, Roll No: 150475

Session: 2014-15

University Department of Mathematics

B.R.A Bihar University, Muzzaffarpur

Abstract

Utilizing the idea of pre-open set, we present and study topological properties of pre-limit points, pre-derived sets, pre-interior and pre-closure of a set, pre-inside points, pre-line, pre-frontier and pre-outside. The relations between pre-derived set (resp. pre-limit point, pre-inside (point), pre-line, pre-wilderness, and pre-exterior) and α -derived set (resp. α -limit point, α -inside (point), α -line, α -outskirts, and α -outside) are explored.

Keywords: Prelimit Point, Pre-derived sets, Pre- Closure, Pre-open sets, Topology

Introduction

The thought of α -open set was presented by Nastad. From that point forward it has been broadly explored in a few written works. In Caldas presented and concentrated on topological properties of α -derived, α border, α -wilderness, and α -outside of a set by utilizing the idea of α -open sets. The idea of pre-open set was presented by Mashhour et al. In this paper, we present the ideas of pre-limit points, pre-derived sets, pre-inside and pre-closure of a set, pre-inside points, pre-line, pre-wilderness and pre-outside by utilizing the idea of pre-open sets, and study their topological properties. We give relations between pre-derived set (resp. pre-limit point, pre-inside (point), pre-line,

International Journal of Advanced Research in Engineering Technology and Science

www.ijarets.org

Volume-9, Issue-6 June – 2022

Email- editor@ijarets.org

ISSN 2349-2819

pre-boondocks, and pre-outside) and α -derived set (resp. α limit point, α -inside (point), α -line, α -boondocks, and α -outside)

2. Preliminaries

Through this paper, (X, \mathscr{T}) and (Y, \mathscr{K}) (simply X and Y) always mean topological spaces. A subset A of X is said to be pre-open [11] (respectively, α -open [14] and semi-open [13]) if $A \subset \text{Int}(\text{Cl}(A))$ (respectively, $A \subset$ Int(Cl(Int(A))) and $A \subset \text{Cl}(\text{Int}(A))$). The complement of a pre-open set (respectively, an α -open set and a semi-open set) is called a pre-closed set (respectively, an α -closed set and a semi-closed set). The intersection of all pre-closed sets (respectively, α -closed sets and semi-closed sets) containing A is called the pre-closure (respectively, α -closure and semi-closure) of A, denoted by $\text{Cl}_p(A)$ (respectively, $\text{Cl}_{\alpha}(A)$ and $\text{Cl}_s(A)$). A subset A is also pre-closed (respectively, α -closed and semi-closed) if and only if $A = \text{Cl}_p(A)$ (respectively, $A = \text{Cl}_{\alpha}(A)$ and $A = \text{Cl}_s(A)$). We denote the family of pre-open sets (respectively, α open sets and semi-open sets) of (X, \mathscr{T}) by \mathscr{T}^p (respectively, \mathscr{T}^{α} and \mathscr{T}^s). Obviously, we have the following relations.

None of these implications is reversible in general.

3. Pre-open sets and α -open sets

Definition 3.1 ([11, 14]). A subset A of X is said to be *pre-open* (respectively, α -open) if $A \subseteq \text{Int}(\text{Cl}A)$ (respectively, $A \subseteq \text{Int}(\text{Cl}(\text{Int}A))$).

The complement of a pre-open set (respectively, an α -open set) is called a *pre-closed set* (respectively, an α -closed set).

The intersection of all pre-closed sets (respectively, α -closed sets) containing A is called the *pre-closure* (respectively, α -closure) of A, denoted by $\operatorname{Cl}_p(A)$ (respectively, $\operatorname{Cl}_{\alpha}(A)$).

A subset A is also pre-closed (respectively, α -closed) if and only if $A = \operatorname{Cl}_p(A)$ (respectively, $A = \operatorname{Cl}_\alpha(A)$). We denote the family of pre-open sets (respectively, α -open sets) of (X, \mathcal{T}) by \mathcal{T}^p (respectively, \mathcal{T}^{α}).

Example 3.2. Let $\mathscr{T} = \{ \varnothing, X, \{a\}, \{c, d\}, \{a, c, d\} \}$ be a topology on $X = \{a, b, c, d, e\}$. Then we have

$$\mathscr{T}^{\alpha} = \mathscr{T} \cup \{\{a, b, c, d\}, \{a, c, d, e\}\},\$$

$$\mathcal{T}^{p} = \mathcal{T} \cup \{\{c\}, \{d\}, \{a, c\}, \{a, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, e\}, \\ \{a, d, e\}, \{a, b, c, d\}, \{a, b, c, e\}, \{a, b, d, e\}, \{a, c, d, e\} \}.$$

www.ijarets.org

Volume-9, Issue-6 June – 2022

Email- editor@ijarets.org

4. Applications of pre-open sets

Definition 4.1. Let A be a subset of a topological space (X, \mathscr{T}) . A point $x \in X$ is said to be *pre-limit point* (resp. α -*limit point*) of A if it satisfies the following assertion:

$$(\forall G \in \mathscr{T}^p(\text{ resp. } \mathscr{T}^\alpha)) (x \in G \Rightarrow G \cap (A \setminus \{x\}) \neq \emptyset).$$

The set of all pre-limit points (resp. α -limit points) of A is called the *pre*derived set (resp. α -derived set) of A and is denoted by $D_p(A)$ (resp. $D_{\alpha}(A)$). Denote by D(A) the derived set of A.

Note that for a subset A of X, a point $x \in X$ is not a pre-limit point of A if and only if there exists a pre-open set G in X such that

$$x \in G$$
 and $G \cap (A \setminus \{x\}) = \emptyset$

or, equivalently,

$$x \in G$$
 and $G \cap A = \emptyset$ or $G \cap A = \{x\}$

or, equivalently,

$$x \in G$$
 and $G \cap A \subseteq \{x\}$.

Example 4.2. Let $X = \{a, b, c\}$ with topology $\mathscr{T} = \{X, \emptyset, \{a\}\}$. Then we have the followings:

- (i) $\mathscr{T}^p = \{X, \varnothing, \{a\}, \{a, b\}, \{a, c\}\} = \mathscr{T}^\alpha$.
- (ii) If $A = \{c\}$, then $D(A) = \{b\}$ and $D_{\alpha}(A) = D_{p}(A) = \emptyset$.
- (iii) If $B = \{a\}$ and $C = \{b, c\}$, then $D_p(B) = \{b, c\}$, $D_p(C) = \emptyset$ and $D_p(B \cup C) = \{b, c\}$.

Theorem 4.3. If a topology \mathscr{T} on a set X contains only \varnothing , X, and $\{a\}$ for a fixed $a \in X$, then $\mathscr{T}^p = \mathscr{T}^{\alpha}$.

Proof. Let $a \in X$ and let A be an element of \mathscr{T}^p . Then $a \in A$. In fact, if not then $A \not\subseteq \operatorname{Int}(\operatorname{Cl}(A)) = \operatorname{Int}(\{a\}^c) = \varnothing$. Hence $A \notin \mathscr{T}^p$, a contradiction. Now since $\operatorname{Int}(A) = \{a\}$, we have

$$Int(Cl(Int(A))) = Int(Cl(\{a\})) = Int(X) = X$$

which contains A, that is, $A \in \mathscr{T}^{\alpha}$. Note that $\mathscr{T}^{\alpha} \subseteq \mathscr{T}^{p}$. Thus $\mathscr{T}^{\alpha} = \mathscr{T}^{p}$. \Box

Example 4.4. Let $X = \{a, b, c, d, e\}$ with topology

$$\mathcal{T} = \{X, \emptyset, \{a\}, \{c, d\}, \{a, c, d\}, \{b, c, d, e\}\}.$$

Then

$$\begin{aligned} \mathscr{T}^p &= & \{X, \varnothing, \{a\}, \{c\}, \{d\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \\ & \{c, e\}, \{d, e\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{a, c, e\}, \{a, d, e\}, \\ & \{b, c, d\}, \{b, c, e\}, \{b, d, e\}, \{c, d, e\}, \{a, b, c, d\}, \\ & \{a, b, c, e\}, \{a, b, d, e\}, \{a, c, d, e\}, \{b, c, d, e\} \} \end{aligned}$$

International Journal of Advanced Research in Engineering Technology and Science

ISSN 2349-2819

www.ijarets.org

Volume-9, Issue-6 June – 2022

$$\begin{aligned} \mathscr{T}^{\alpha} &= & \{X, \varnothing, \{a\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}, \{c, d, e\} \\ & \{a, b, c, d\}, \{a, c, d, e\}, \{b, c, d, e\} \}. \end{aligned}$$

Consider subsets $A = \{a, b, c\}$ and $B = \{b, d\}$ of X. Then

$$\begin{array}{ll} D(A)=\{b,d,e\}, & D_p(A)=\varnothing,\\ \mathrm{Int}(A)=\{a\}, & \mathrm{Int}_p(A)=A,\\ \mathrm{Int}_\alpha(A)=\{a\}, & \mathrm{Cl}_p(A)=A,\\ \mathrm{Cl}_\alpha(A)=X, & \mathrm{Cl}_p(B)=B,\\ \mathrm{Cl}_\alpha(B)=\{b,c,d,e\}, & \mathrm{Int}(B)=\varnothing,\\ \mathrm{Int}_p(B)=B, & \mathrm{Int}_\alpha(B)=\varnothing. \end{array}$$

Example 4.5. Consider a topology

$$\mathscr{T} = \{X, \varnothing, \{a\}, \{a, b\}, \{a, c, d\}, \{a, b, c, d\}, \{a, b, e\}\}$$

on
$$X = \{a, b, c, d, e\}$$
. Then

$$\begin{split} \mathscr{T}^p &= & \{X, \varnothing, \{a\}, \{a, b\}, \{a, c\}, \{a, d\}, \{a, e\}, \{a, b, c\}, \\ & & \{a, b, d\}, \{a, b, e\}, \{a, c, d\}, \{a, c, e\}, \{a, d, e\} \\ & & \{a, b, c, d\}, \{a, b, c, e\}, \{a, b, d, e\}, \{a, c, d, e\}\} \\ &= & \mathscr{T}^\alpha. \end{split}$$

For subsets $A = \{c, d, e\}$ and $B = \{b\}$ of X, we have

 $D(A) = \{c, d\}$ $D(B) = \{e\}.$ $D_p(A) = \emptyset$ $D_p(B) = \emptyset.$ $D_{\alpha}(A) = \emptyset$ $D_{\alpha}(B) = \emptyset.$ $Int(A) = \emptyset$ $\operatorname{Int}(B) = \emptyset,$ $\operatorname{Int}_p(A) = \emptyset,$ $\operatorname{Int}_p(B) = \emptyset,$ $\operatorname{Int}_{\alpha}(B) = \emptyset,$ $\operatorname{Int}_{\alpha}(A) = \emptyset,$ $\operatorname{Cl}_p(A) = \{c, d, e\},\$ $\operatorname{Cl}_p(B) = \{b\},\$ $\operatorname{Cl}_{\alpha}(A) = \{c, d, e\},\$ $\operatorname{Cl}_{\alpha}(B) = \{b\},\$ $\operatorname{Cl}_p(\{b,d\}) = \{b,d\},\$ $\operatorname{Cl}_{\alpha}(\{b,d\}) = \{b,d\},\$ $\operatorname{Int}_p(\{b,d\}) = \emptyset,$ $Int(\{b,d\}) = \emptyset,$ $\operatorname{Int}_{\alpha}(\{b,d\}) = \emptyset.$

Lemma 4.6. If there exists $a \in X$ such that $\{a\}$ is the smallest element of $(\mathscr{T} \setminus \{\emptyset\}, \subseteq)$, then every non-empty pre-open set contains $\bigcap \{G_i \mid G_i \in \mathscr{T} \setminus \{\emptyset\}; i = 1, 2, 3, \cdots \}$.

Proof. If $\{a\}$ is the smallest element of $(\mathscr{T} \setminus \{\varnothing\}, \subseteq)$, then

$$\bigcap \{G_i \mid G_i \in \mathscr{T} \setminus \{\varnothing\}; i = 1, 2, 3, \cdots\} = \{a\}.$$

Let A be a non-empty pre-open set in X. If $a \notin A$, then $Cl(A) \subseteq \{a\}$ and so

$$A \not\subseteq \operatorname{Int}(\operatorname{Cl}(A)) \subseteq \operatorname{Int}(\{a\}^c) = \emptyset$$

which is a contradiction. Hence $a \in A$, and so the desired result is valid. \Box

www.ijarets.org

Volume-9, Issue-6 June – 2022

Email- editor@ijarets.org

Theorem 4.7. Let \mathscr{T} be a topology on a set X. If there exists $a \in X$ such that $\{a\}$ is the smallest element of $(\mathscr{T} \setminus \{\varnothing\}, \subseteq)$, then $\mathscr{T}^{\alpha} = \mathscr{T}^{p}$.

Proof. It is sufficient to show that $\mathscr{T}^p \subseteq \mathscr{T}^\alpha$. Let $A \in \mathscr{T}^p$. If $A = \emptyset$, then clearly $A \in \mathscr{T}^\alpha$. Assume that $A \neq \emptyset$. Then $a \in A$ by Lemma 4.6. Since $\{a\} \subseteq \operatorname{Int}(A)$, it follows that $X = \operatorname{Cl}(\{a\}) \subseteq \operatorname{Cl}(\operatorname{Int}(A))$ so that

$$A \subseteq X = \operatorname{Int}(X) \subseteq \operatorname{Int}(\operatorname{Cl}(\operatorname{Int}(A)))$$

Hence A is an α -open set.

Theorem 4.8. Let \mathscr{T}_1 and \mathscr{T}_2 be topologies on X such that $\mathscr{T}_1^p \subseteq \mathscr{T}_2^p$. For any subset A of X, every pre-limit point of A with respect to \mathscr{T}_2 is a pre-limit point of A with respect to \mathscr{T}_1 .

Proof. Let x be a pre-limit point of A with respect to \mathscr{T}_2 . Then $(G \cap A) \setminus \{x\} \neq \varnothing$ for every $G \in \mathscr{T}_2^p$ such that $x \in G$. But $\mathscr{T}_1^p \subseteq \mathscr{T}_2^p$, so, in particular, $(G \cap A) \setminus \{x\} \neq \varnothing$ for every $G \in \mathscr{T}_1^p$ such that $x \in G$. Hence x is a pre-limit point of A with respect to \mathscr{T}_1 .

The converse of Theorem 4.8 is not true in general as seen in the following example.

Example 4.9. Consider topologies $\mathscr{T}_1 = \{X, \varnothing, \{a\}\}$ and

 $\mathscr{T}_2 = \{X, \varnothing, \{a\}, \{b, c\}, \{a, b, c\}\}$

on a set $X = \{a, b, c, d\}$. Then

$$\mathscr{T}_1^p = \mathscr{T}_1 \cup \{\{a, b\}, \{a, c\}, \{a, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}\}$$

and

$$\mathscr{T}_2^p = \mathscr{T}_2 \cup \{\{b\}, \{c\}, \{a, b\}, \{a, c\}, \{a, d\}, \{a, b, d\}, \{a, c, d\}\}.$$

Note that $\mathscr{T}_1^p \subseteq \mathscr{T}_2^p$ and c is a pre-limit point of $A = \{a, b\}$ with respect to \mathscr{T}_1 , but it is not a pre-limit point of A with respect to \mathscr{T}_2 .

Conclusion

Let (X, \mathscr{T}) be a topological space which is given in Example 4.4. Take $A = \{d, e\}$. Then $\operatorname{Ext}_{\alpha}(A) = \{a\}$ and $\operatorname{Ext}_{p}(A) = \{a, b, c\}$. Thus the reverse inclusion of Theorem 4.45(1) is not valid. Let $A = \{b, e\}$ and $B = \{c, d, e\}$. Then $\operatorname{Ext}_{p}(B) = \{a\} \subseteq \{a, c, d\} = \operatorname{Ext}_{p}(A)$. This shows that the converse of (5) in Theorem 4.45 is not valid. Now let $A = \{d, e\}$ and $B = \{c\}$. Then $\operatorname{Ext}_{p}(A \cup B) = \{a\} \neq \{a, b\} = \{a, b, c\} \cap \{a, b, d, e\} = \operatorname{Ext}_{p}(A) \cap \operatorname{Ext}_{p}(B)$ which shows that the equality in Theorem 4.45(6) is not valid. Finally let $A = \{a, b\}$ and $B = \{c, d, e\}$. Then $\operatorname{Ext}_{p}(A \cap B) = \{a, b, c, d, e\}$ and $\operatorname{Ext}_{p}(A) \cup \operatorname{Ext}_{p}(B) = \{a, c, d, e\}$. This shows that the equality in Theorem 4.45(6) is not valid. Finally let $A = \{a, b\}$ and $B = \{c, d, e\}$. Then $\operatorname{Ext}_{p}(A \cap B) = \{a, b, c, d, e\}$ and $\operatorname{Ext}_{p}(A) \cup \operatorname{Ext}_{p}(B) = \{a, c, d, e\}$. This shows that the equality in Theorem 4.45(7) is not valid.

International Journal of Advanced Research in Engineering Technology and Science

www.ijarets.org

Volume-9, Issue-6 June – 2022

References

- 1. D. Andrijevic, Some properties of the topology of α -sets, Mat. Vesnik 36 (1984), 1–10.
- 2. M. Caldas, A note on some applications of α -sets, Int. J. Math. Math. Sci. 2003, no. 2 (2003), 125–130.
- M. Caldas and J. Dontchev, On spaces with hereditarily compact α-topologies, Acta Math. Hung. 82 (1999), 121–129.
- S. Jafari and T. Noiri, Contra-α-continuous functions between topological spaces, Iranian Int. J. Sci. 2, no. 2 (2001), 153–167.
- 5. S. Jafari and T. Noiri, Some remarks on weak α-continuity, Far East J. Math. Sci. 6, no. 4 (1998), 619–625.
- 6. S. N. Maheshwari and S. S. Thakur, On α-irresolute mappings, Tamkang J. Math. 11 (1980), 209–214.
- S. N. Maheshwari and S. S. Thakur, On α-compact spaces, Bull. Inst. Math. Acad. Sinica 13 (1985), 341– 347.
- A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53 (1982), 47–53.
- H. Maki, R. Devi and K. Balachandran, Generalized α-closed sets in topology, Bull. Fukuoka Univ. Ed. Part III 42 (1993), 13–21.
- 10. H. Maki and T. Noiri, The pasting lemma for α -continuous maps, Glas. Mat. 23(43) (1988), 357–363.
- A. S. Mashhour, I. A. Hasanein and S. N. El-Deeb, A note on semi-continuity and precontinuity, Indian J. Pure Appl. Math. 13, no. 10 (1982), 1119–1123.
- 12. A. S. Mashhour, I. A. Hasanein and S. N. El-Deeb, α-continuous and α-open mappings, Acta Math. Hungar.
 41, no. 3-4 (1983), 213–218.
- 13. N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70 (1963), 36–41.
- 14. O. Nj°astad, On some classes of nearly open sets, Pacific J. Math. 15 (1965), 961–970. \backslash
- 15. I. L. Reilly and M. K. Vamanamurthy, On α -sets in topological spaces, Tamkang J. Math. 16 (1985), 7–11.
- 16. J. Tong, On decomposition of continuity in topological spaces, Acta Math. Hungar. 54, no. 1-2 (1989), 51–55.